Sensory modification of leech swimming: rhythmic activity of ventral stretch receptors can change intersegmental phase relationships.

نویسندگان

  • J Cang
  • W O Friesen
چکیده

For segmented animals to generate optimal locomotory movements, appropriate phase relationships between segmental oscillators are crucial. Using swimming leeches, we have investigated the role of sensory input in establishing such relationships. We found that the stretch receptors associated with ventral longitudinal muscles encode the information of muscle contraction during swimming via membrane potential oscillations, with amplitudes of up to 10 mV at our recording site. We subsequently modified the activity of ventral stretch receptors (VSRs) by injecting rhythmic current at different phases of the swim cycle and determined intersegmental phase lags by comparing the delay between the discharges of serially homologous motoneurons in three adjacent segments of isolated nerve cords. When no current was injected, the phase lag between neighboring segments was 8.6 +/- 0.8 degrees (mean +/- SEM; n = 20), with large phase variations from cycle to cycle, between different episodes, and between different preparations. When the phase of stretch receptor activity was set to 90-150 degrees by current injection, the phase of the motoneuron activity in the ganglion was consistently retarded by approximately 5 degrees. It was advanced by approximately 5 degrees when the VSR phase was set to 240-300 degrees. Therefore, the rhythmic activity of the ventral stretch receptor generated during swimming can change intersegmental phase lags of leech ganglia in a phase-dependent manner. These stretch receptors may set the optimal intersegmental phases during swimming movement in intact leeches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model for intersegmental coordination of leech swimming: central and sensory mechanisms.

Sensory feedback as well as the coupling signals within the CNS are essential for leeches to produce intersegmental phase relationships in body movements appropriate for swimming behavior. To study the interactions between the central pattern generator (CPG) and peripheral feedback in controlling intersegmental coordination, we have constructed a computational model for the leech swimming syste...

متن کامل

Sensory feedback can coordinate the swimming activity of the leech.

Previous studies showed that sensory feedback from the body wall is important and sometimes critical for generating normal, robust swimming activity in leeches. In this paper, we evaluate the role of sensory feedback in intersegmental coordination using both behavioral and physiological measurements. We severed the ventral nerve cord of leeches in midbody and then made video and in situ extrace...

متن کامل

Characterization of central axon terminals of putative stretch receptors in leeches.

Sensory feedback from stretch receptors, neurons that detect position or tension, is crucial for generating normal, robust locomotion. Among the eight pairs of putative stretch receptors associated with longitudinal muscles in midbody segments of medicinal leeches, only the ventral stretch receptor has been characterized in detail. To achieve the identification of all such receptors, we penetra...

متن کامل

Functional analyses of the leech swim oscillator.

The oscillations that underlie swimming movements in the leech arise from a series of identified concatenated circuits within the ventral nerve cord. In the intact nerve cord, ascending and descending intersegmental interactions via axons within the lateral connectives function both to generate robust oscillations throughout the cord and to establish an anterior-to-posterior phase delay among s...

متن کامل

Rhythmic swimming activity in neurones of the isolated nerve cord of the leech.

1. Repeating bursts of motor neurone impulses have been recorded from the nerves of completely isolated nerve cords of the medicinal leech. The salient features of this burst rhythm are similar to those obtained in the semi-intact preparation during swimming. Hence the basic swimming rhythm is generated by a central oscillator. 2. Quantitative comparisons between the impulse patterns obtained f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 20  شماره 

صفحات  -

تاریخ انتشار 2000